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When coexisting gas and liquid phases of a pure fluid are heated through their
critical point, large-scale density fluctuations make the fluid extremely
compressible and expandable and slow the diffusive transport. These properties
lead to perfect wetting by the liquid phase (zero contact angle) near the critical
temperature Tc. However, when the system’s temperature T is increased to Tc, so
that it is slightly out of equilibrium, the apparent contact angle is very large (up
to 110°), and the gas appears to ‘‘wet’’ the solid surface. These experiments were
performed and repeated on several missions on the Mir space station using the
Alice-II instrument, to suppress buoyancy-driven flows and gravitational con-
straints on the liquid–gas interface. These unexpected results are robust, i.e.,
they are observed under either continuous heating (ramping) or stepping by
positive temperature quenches, for various morphologies of the gas bubble and
in different fluids (SF6 and CO2). Possible causes of this phenomenon include
both a surface-tension gradient, due to a temperature gradient along the inter-
face, and the vapor recoil force, due to evaporation. It appears that the vapor
recoil force has a more dominant divergence and explains qualitatively the large
apparent contact angle far below Tc.

KEY WORDS: contact angle; critical exponent; Marangoni flow; principal
axis; surface tension; thermal-capillary flow; vapor recoil.

1. INTRODUCTION

When a coexisting liquid–gas mixture of a single species fluid is heated into
the gas phase, a complex process of fluid dynamics, heat transfer, and



interfacial phenomena usually occurs [1]. This process, often called
boiling, is important in many applications because of the large heat transfer
that it can facilitate, so many types of heat transfer technology use this
process. Many of these complications are caused by the buoyancy from
gravity, which lifts the gas bubbles that nucleate on a hot surface. Near the
liquid–gas critical point, material and thermal properties that play an
important roll in the boiling process such as the surface tension vary con-
siderably with temperature [2]. These properties vary according to well-
known universal power laws that either converge or diverge (e.g., the
surface tension goes to zero) and lead to perfect wetting by the liquid phase
(zero contact angle) near the critical temperature Tc [3]. In a boiling
process, we can expect a perfectly wetted wall to dry from evaporation,
resulting in liquid–gas–solid contact lines. The same physics that makes
perfect wetting in equilibrium will result in a boundary condition of zero
contact angle when heat is applied. Here we report on observations of a
single bubble in a thin constant mass cell that is filled with fluid very close
to its critical density. This thin cell produces a considerable constraint on
the bubble and allows the entire bubble to be observed as the heat is
applied. As the liquid–gas mixture is heated toward the critical point, the
diverging and converging material properties produce a large effect on the
bubble shape.

2. RESULTS

In these experiments, a thin layer of SF6 or CO2 was sandwiched
between two sapphire windows and surrounded by a copper housing in the
optical cell shown in Fig. 1. Figures 2 and 3 show the results from a typical
run where the cell was heated linearly in time to a temperature higher than
the critical temperature Tc while the liquid–gas interface was visualized
through light transmission normal to the windows. Figure 3 shows several
cell images obtained during the heating. Because the contact angle is zero
near the critical point, the liquid–gas meniscus between the two parallel
windows forms a semicircular interface in the plane perpendicular to the
windows. The interface appears dark in the images because the liquid–gas
meniscus refracts the normally incident light away from the cell axis. We
have verified by a ray-tracing model that all of the normally incident light
on the meniscus is refracted out of the field of view. This shows that in
normally incident light, the dark region measures the radius of the semi-
circular meniscus.

These results were obtained and repeated using several samples of
both SF6 and CO2 under different cell aspect ratios and heating protocols
(ramping rates and quenches) on several French/Russian (Cassiopée and
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Fig. 1. Sample cell. Shown is the sample cell in terrestrial gravity filled with SF6
fluid. The meniscus between the coexisting liquid and gas phases below the critical
point can be seen. The average density exceeds the critical density by 0.3±0.01%.
The fluid volume (12.000-mm diameter, 1.664-mm thickness) is contained between
two sapphire windows and a CuBeCo alloy housing.

Pegase) and French/American (GMSF) missions on the Mir space station
using the Alice-II instrument [4]. This instrument is specially designed to
obtain high-precision temperature control (stability of %10 mK over 50 h,
repeatability of %40 mK over 7 days). To place the samples near the critical
point, constant-mass cells are prepared with a high-precision density, to
0.02%, by observing the volume fraction change of the cells as a function
of the temperature on the ground [5]. Two cylindrical sapphire windows
12 mm in diameter and 90 mm long are pressed into a copper block with a
corresponding cylindrical hole and glued to the copper at the sides of the
sapphire. This method avoids the unknown volume associated with o-rings,
etc., allowing the above-high-precision density measurements to be verified.
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Fig. 2. Plots of the contact angles as a function of
temperature and the temperature of the cell as a function
of time. The critical temperature of SF6 is Tc=45.54°C
as shown. The mean value of dT/dt at Tc is about
8.4 mK · s−1. Also shown are points where the images in
Fig. 3 were taken, with the corresponding letter labels.

We also note that some of the fluid volume near the cell edge is not visible
in our images because it is blocked by glue. This radial edge distance
is approximately 1 mm. Nevertheless, we can find the cell center and cell
edge because there is a 10-mm-diameter reference etching on the sapphire
windows that is concentric with the cell. Similar ground-based experiments
were done before these experiments, yielding completely different results
[5]. In this case the interface is horizontal except very near a wall.

In our system the liquid wets the solid, so that the initial state of our
system before heating is a flat bubble constrained by the two windows and
the cell edge. The initial off-center position of the bubble, with part of the
bubble touching the copper ring, occurs because the cell windows are not
exactly parallel and constrain the bubble to press against the ring. We can
estimate the tilt angle, h, between the windows from the mechanical preci-
sion of the cell manufacturing process, and it does not exceed 0.3°. In
thicker cells when the bubbles are not pressed against the ring or when the
bubble is constrained not to touch the side wall, no similar bubble defor-
mation is observed.

Figures 2 and 3 show that as the critical point is approached, the gas
region spreads along the copper side wall. Because the curvature on a large
portion of the bubble is constant, we can extrapolate it to the wall to define
an apparent contact angle (see Fig. 3A), and this apparent contact angle
increases. The dark region that measures the meniscus radius does not
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Fig. 3. Contact angle and bubble shape. Shown is a series of images of the bubble at various
temperatures indicated in Fig. 2. (A) A thin line that estimates the tangent to the bubble at the
cell edge. The apparent contact angle is the angle between this thin line and the thick line that
indicates the tangent to the cell’s edge (the cell’s edge is out of the field of view). The change in
the contact angle and bubble shape is clearly seen. The first row of images shows that the
bubble distortion and contact angle changes occur even far below the critical point. The second
row of images illustrates the rapid changes that occur close to the critical point. The last row of
images shows a density gradient that replaces the interface above the critical temperature.

appear to be significantly affected except at the side wall, where it disap-
pears. Figures 2 and 3 show that there is a significant bubble deformation
quite far below the critical temperature Tc. Near the critical temperature the
gas has spread over nearly half the copper side wall. The apparent contact
angle becomes so large that the gas phase appears to ‘‘wet’’ a large portion
of the cell surface. When crossing the critical point, as shown in Figs.
3D–H, the vapor bubble loses its convexity and rapidly evolves. At T % Tc,
there is no latent heat and no surface tension so that the interface becomes
a density gradient. This is shown in the last several images in Fig. 3.

3. DISCUSSION

Figures 2 and 3 show that there is significant bubble deformation
below Tc where the surface tension is still relatively high and the shape may
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be analyzed by quasi-static arguments. If a temperature change, dT,
appears along the liquid–gas interface, it will create a surface-tension gra-
dient ds=(ds/dT) dT that will drive a thermal capillary or a Marangoni
flow in the bulk of both fluids [6–8]. Such a flow could modify the shape
of the bubble. We have previously seen Marangoni rolls in similar cells in
the same apparatus in ground-based experiments using the shadowgraph
effect. These rolls have a horizontal width of the order of the cell thickness
and are transient. They form near the gas–liquid interface after a large
temperature quench and travel along the horizontal interface for several
seconds before disappearing.

One of us (J.H.) has also seen similar shadowgraph images of sus-
tained Maranogoni convection in evaporating methanol along a thin
horizontal interface in similar geometry verifying that the transient rolls are
Marangoni rolls, probably also driven by evaporation. We have not seen
any evidence of the steady convection that is required to create and main-
tain the observed bubble shape in our experiments. We have, however, on
occasion seen transient plumbs in some experimental runs from bubble
coalescence, but these events had only a small transient influence on the
bubble shape. The fact that there is no convection farther away from the
critical point shows that the interface is isothermal. This may not neces-
sarily be true closer to the critical point.

The dimensionless parameter that governs the stability of an iso-
thermal interface, in the presence of an externally imposed temperature
gradient normal to the interface, is the Marangoni number, given by
Ma=dsL/(gDth). L is the characteristic length over the distance that s
varies by ds, g, and Dth are the viscosity and the thermal diffusivity,
respectively. This number is the ratio of the surface-tension driving force to
the viscous dissipation force, so that if this number is larger than ’ 100,
a stationary interface becomes unstable to surface tension-driven flow.
Close to the critical point the surface tension vanishes with the universal
form s=s0(Tc−T)2n, where n=0.63 is a universal exponent, ds=
−2us0(Tc−T)2n−1 dT(x) ’ (Tc−T)0.26 dT(x). The Dth factor in the denom-
inator of Ma disappears with the form Dth ’ (Tc−T)0.85 [9] so that Ma
has the form Ma ’ (Tc−T)−0.59, which diverges as TQ Tc. We note,
however, that we do not have an externally imposed temperature gradient
that corresponds to the classical Marangoni instability problem. A tem-
perature gradient across the interface driven by evaporative heat transfer
would tend to equilibrate any dT(x) to maintain a uniform saturation
pressure in the cell, i.e., local temperature perturbations away for an
isothermal interface would be strongly dampened by evaporation. Even far
from saturation, an evaporating interface tends to a uniform temperature
through convective heat transport in the absence of an externally impose
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temperature gradient, as observed in Ref. 7. In addition, the strength
of any possible surface tension-driven convection is measured by the
characteristic velocity U ’ ds/g. This velocity goes to zero near Tc as
U ’ (Tc−T)0.26. Very close to the critical point, the velocity of the flow
produced by a possible dT(x) is probably too small to observe and cer-
tainly too small to drive the large bubble distortions that we have observed.

We next discuss the possible influence of the window tilt on the bubble
shape. We first note that there are several important constraints present in
our system. A liquid–gas mixture in coexistence has a specific volume frac-
tion for gas given by the lever rule. The zero contact angle results in prin-
cipal axes of curvature that are parallel to the cylinder axis, so that the
edge of the bubble in Fig. 3 appears to be a thick dark line. These principal
axes are oriented in a direction normal to this thick line. These regions of
curved liquid–gas interface not in contact with the wall have a Laplace
pressure p=sc at each element of free interface. Because both p and s are
constant on the interface, c is also constant at each point in this region.

We have computed the initial equilibrium bubble shape by minimizing
the system’s free energy as shown in Fig. 4a. This calculation used the
Surface Evolver software, which employs the finite element method. We
used a zero contact angle and a window tilt of 0.3°. This calculation matches
the initial bubble shape, verifies that the bubble is touching the side wall,
and verifies that the window tilts are the cause of this initial shape. To gain
some qualitative understanding of this initial bubble shape we consider the
forces on the bubble and the condition of mechanical equilibrium. The slight
tilt of the windows about a tilt axis parallel to x by an angle h makes a net
reaction force from the windows in the (−y) direction, as shown in Fig. 4b.
The rotational symmetry that the bubble would have with parallel windows
is broken in to a discrete reflection symmetry as the bubble changes from a
circular cross section in the (x, y) plane to an oval cross section.

We first reduce this problem to two dimensions by integrating along
all of the principal axes of the interface parallel to z to get net forces in the
(x, y) plane as shown in Fig. 4. The y axis is in the reflection symmetry
plane of the bubble (also the plane of maximum tilt that defines h) and all
of the x components of any normal or interfacial stress cancel by this
reflection symmetry. At each element of the bubble between x and x+dx
there are several y components of force. There is the y component of the
free interface, FfI cos f, which pushes in the (−y) direction, where FfI=sL
and L is the distance between the windows, which depends on the shape of
the bubble, y(x). The flat tilted windows also produce a force, FW, that
pushes in the (−y) direction, which is equal to > p sin(h/2) l(x) dx. The
limits depend on the shape of the region in contact with the window that is
parallel to the y axis, l(x).
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Fig. 4. The bubble in equilibrium. (a) Comparison of a 3-D numerical simulation of the
equilibrium bubble shape with an actual image of the bubble. The numerical results (dark
ovals) are drawn over the experimental images (also see Fig. 3). The image of the bubble
interface is extrapolated to the actual edge of the cell, which is slightly outside of the field of
view. The window tilt angle input to the simulation is 0.3°. (b) Diagram showing the forces on
the bubble in equilibrium. The position of the bubble interface has coordinates x, y, and z,
where y is the symmetry axis of the bubble and z is perpendicular to the image plane. In the
(x, y) image plane is shown the free interface force, FfI, which makes an angle, f, with the y
axis. Both the normal force from the side wall, N, and the pinned interface force, FpI, make an
angle fŒ with the y axis. R is the radius of the cell and l(x) is the width of the bubble along y.
In the (y, z) slice at the right, the tilt angle, h, the y component of the normal force from the
window, Fw, the length of the pinned interface, s, and the width of the bubble along z, L(x),
are shown. At the bottom the other cross section in the (x, z) plane is shown, which shows the
thickness, t, of the bubble–side wall contact area.

Below the x axis there are several forces that push the gas in the
bubble in the (+y) direction. The part that is not pinned by the wall has a
(+y) component to FfI cos f. The large curvature varies more strongly in
this edge region of the bubble, and the small curvature also varies consi-
derably in order to maintain the constant curvature condition. The part of
the interface pinned by the wall has both normal and interfacial forces,
which all push toward the center of the cell. The dark line corresponding to
the interface is concentric with the cell radius so its large-curvature princi-
pal axis passes through the cylinder axis. This dark line is not as thick as it
would be if it were not pinned by the side wall, implying that t, as defined
in Fig. 4b, is constant as we have also seen in the numerical simulation.
This pinned interface produces a force FpI of constant magnitude that
points toward the cell’s center at each dx. This force is ss cos fŒ, where s is
the length associated with the integration and fŒ is the angle between the
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cell radius and the y axis. There is also a normal force, N=pt dx, on the
bubble from the side-wall region that is in contact with the bubble, as
shown in Fig. 4.

Because the higher pressure in the bubble is caused by this Laplace
pressure, p=sc, all of the above forces are proportional to s. All of these
forces must also integrate to zero so that a constant s on the isothermal
interface factors out of the mechanical equilibrium condition and the
bubble shape depends only on geometrical factors. The bubble shape
should therefore also be independent of temperature. Although the window
tilt and the constraining walls play an important roll in defining the
boundary conditions and position of the bubble, they cannot be the cause
of the bubble deformation that we have observed. As s(T) decreases when
the bubble is heated, all the forces on the bubble decrease proportionately,
i.e., the bubble become more easily deformed, but the reaction forces from
the window tilt also decrease as the Laplace force decreases. We also note
that in some experiments where the temperature was raised by steps and
allowed to equilibrate between them, the bubble returned to its initial
shape. We conclude that an external force is applied to this system as the
heating is applied and the temperature is increased.

When very close to the critical point, the vapor bubble loses its con-
vexity and evolves rapidly, as shown in Figs. 3D–H. As shown above,
convective transport of heat cannot equilibrate the interface temperature.
The other possible modes of heat transport are also very inefficient as
TQ Tc. Temperature diffusion becomes low because Dth ’ (Tc−T)0.85Q 0
as TQ Tc; the latent heat also goes to zero as (Tc−T)b, where b=0.325. In
our experiment the cell is heated past Tc, so the possibility of dT(x) along
the interface increases close to Tc. There is, however, a very efficient heat
transfer process close to the critical point. This process is an adiabatic heat
transfer process caused by the diverging compressibility and thermal
expansion coefficient particular to near-critical fluids [10]. The large
thermal expansion and the slow diffusive transport of thermal energy in a
near-critical fluid lead to a low-density thermal boundary layer near the
heating walls. These expanded boundary layers compress the bulk fluid,
heating it adiabatically. In a liquid–gas mixture, the compression by the
boundary layer may heat the gas more than the liquid, leading to a quite
large temperature difference [11]. Recently, in fact, it has been observed
that when a two-phase system’s temperature is quenched upward, the gas
temperature may actually exceed the wall temperature [12]. Close to the
critical point, a temperature change, dT(x), where x is a position at the
interface, could change the bubble’s shape by producing a surface-tension
change, ds, on the interface. After the cell heating is started, the bubble
deforms and the Laplace formula becomes p=s(x) c(x)=constant. We
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write p=pc+dp to separate the bulk pressure from the pressure caused by
local variations of s(x) and c(x). These quantities are also separated into
local and bulk parts, i.e., c(x)=c+dc(x) and s(x)=s+ds(x). Canceling
the bulk part we find that dc=((dp/ds)−c)/((s/ds)+1). Because
s/dsQ 0 as TQ Tc, the ratio dp/ds determines the near-critical behavior
of dc. dp/ds measures the uniform pressure change when a surface-tension
change occurs, and it is clear that dpQ 0 as dsQ 0 (i.e., TQ Tc).

Near Tc the ratio dp/ds may either (i) diverge, (ii) converge to a con-
stant, or (iii) converge to zero. In case (i) we find that dc ’ dp(Tc−T)1−2n as
TQ Tc so that the critical exponent for a curvature divergence would be
weaker than 1−2n % −0.26. Such a divergence of curvature probably
occurred near the copper side wall. We have seen something quite opposite,
in that the interface appears to flatten away from the side wall in some
parts of Figs. 3F and G. This implies either that there is no curvature
divergence [cases (ii) and (iii)] or that there is no dT(x) along the interface
in this region. On the other hand, if dp/dsQ c0=constant [case (ii)] or
dp/dsQ 0 [case (iii)] as TQ Tc, then c(x)Q c0 or 0 as TQ Tc, i.e., a
region of interface with a local change in temperature goes to this curva-
ture value [case (ii)] or becomes flat [case (iii)] near the critical point. In
cases (ii) and (iii), a dT(x) along the interface could help to explain these
images. At T \ Tc, the surface tension vanishes, and the bubble’s relaxation
from surface tension is negligible, so that the ‘‘interface’’ shape is defined
by local mass fluxes. In this case the interface evolution is analogous to the
melting of a liquid–solid interface.

We next analyze another possible source of bubble deforming stress
for an isothermal interface. The bubble may be deformed through the
process of evaporation, i.e., by the normal stress exerted on the interface by
the recoil from departing vapor [13, 14]. Let n be the evaporating mass per
unit time per unit interface area. The evaporating gas moves normally to
the interface, on average, and exerts a force per unit area (a ‘‘thrust’’) on
the liquid of dp(x)=n2(x)((1/rG)−(1/rL)), where r denotes the mass
density and the subscripts L and G refer to liquid and gas, respectively. To
find the distribution n(x) at the interface it is necessary to solve the entire
heat transfer problem, and this problem is complicated by the adiabatic
heat transfer process. Because the temperature varies sharply in the
boundary layer adjacent to the walls of the cell [10], the largest portion of
mass transfer across the interface takes place near the triple contact line, so
that n(x) is large in the vicinity of the contact line. A more detailed analysis
[15] shows that n(x) can exhibit a logarithmic divergence at the contact
line while decreasing exponentially far from it.

We assume that n(x) has the following form: n(x)=g(x)(Tc−T)a as
TQ Tc, i.e., it has the same local behavior with respect to temperature as
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the critical temperature is approached. The rate of change of mass of the
vapor bubble is dM/dt=> n(x) dx=d/dt(VjrG), where the integral is
over the interfacial area, V is the cell volume, and j is the constant-vapor
volume fraction (j is the ratio of the gas volume to the total volume, j=1

2
when the average density is the critical density rc). Near the critical point
the coexistence curve has the form rG=rc−Dr/2, where Dr ’ (Tc−T)b,
with b=0.325, so that dM/dt ’ (Tc−T)b−1 dT/dt as TQ Tc. Thus,
a=b−1 and the curvature change due to the vapor recoil scales as
dc ’ dp/s ’ (Tc−T)3b−2−2n. Because this critical exponent ( % −2.3) is very
large, it should manifest itself even far from the critical point in agreement
with the experiments. This divergence is also much larger than the possible
curvature divergence from a surface-tension gradient. In summary, as
TQ Tc, the vapor mass growth follows the growth of its density (the vapor
volume remains constant), so that the diverging vapor production near the
critical point drives a diverging recoil force.

The shape of the interface is governed by the equation dp(x)+pc=
c(x) s. Because c is proportional to the second derivative of the bubble
shape, this governing formula is a differential equation with the boundary
condition given by the actual contact angle. This actual contact angle is the
first derivative of the bubble shape function at the solid wall and is zero
near the critical point. This problem can be reduced to two dimensions as
in the equilibrium case, and we solved it using an expression for dp(x) that
contains the main physical features of the solution of the heat conduction
problem [15] (the logarithmic divergence at the contact line and the rapid
decay away from it). The influence of the vapor recoil force relative to the
surface tension is measured using a dimensionless parameter N, defined as
N=> dp dl/s, where the integration is performed over the drop contour
perpendicular to the contact line. Figure 5 shows how the apparent contact
angle increases with the increase in N. Because N ’ (Tc−T)−2.3Q. as
TQ Tc, the N increase mimics the approach to the critical point and quali-
tatively explains the observed shape of the vapor bubble. The large
apparent contact angle can be understood by noting that the curvature
increases sharply near the contact line. Because the interface slope changes
so abruptly near the contact line, the contact angle appears much larger
than zero, as shown in Fig. 5. In other experiments [16] under weightless
conditions a similar drying process can be seen in the bubble images. Mul-
tiple bubble interactions and a low cell aspect ratio, however, complicated
these experiments.

A very similar drying takes place during the liquid boiling process at a
large heat flux. When the heating to a surface is increased past a critical
heat flux, there is a sudden transition to ‘‘film’’ boiling, where the heater
becomes covered with gas and may burn out [14, 15]. This ‘‘burnout’’ or
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Fig. 5. Calculated contact angle and bubble shape. The cal-
culated shape of the vapor–liquid interface as described in the text
for the different values of the dimensionless strength of vapor
recoil N, which goes to infinity when the system approaches the
critical point. Note that the actual contact angle is zero for all the
curves.

‘‘boiling crisis’’ is an important practical problem in many industries. We
interpret the boiling crisis to be similar to the drying transition shown here
[15]. Recent numerical calculations also support this interpretation [17].
The main difference is that the large value of N is made by a large vapor
production that can be achieved during strong overheating rather than by
the critical effects.
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